Hybrid One-Shot 3D Hand Pose Estimation by Exploiting Uncertainties

نویسندگان

  • Georg Poier
  • Konstantinos Roditakis
  • Samuel Schulter
  • Damien Michel
  • Horst Bischof
  • Antonis A. Argyros
چکیده

Model-based approaches to 3D hand tracking have been shown to perform well in a wide range of scenarios. However, they require initialisation and cannot recover easily from tracking failures that occur due to fast hand motions. Data-driven approaches, on the other hand, can quickly deliver a solution, but the results often suffer from lower accuracy or missing anatomical validity compared to those obtained from model-based approaches. In this work we propose a hybrid approach for hand pose estimation from a single depth image. First, a learned regressor is employed to deliver multiple initial hypotheses for the 3D position of each hand joint. Subsequently, the kinematic parameters of a 3D hand model are found by deliberately exploiting the inherent uncertainty of the inferred joint proposals. This way, the method provides anatomically valid and accurate solutions without requiring manual initialisation or suffering from track losses. Quantitative results on several standard datasets demonstrate that the proposed method outperforms state-of-the-art representatives of the model-based, data-driven and hybrid paradigms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simultaneous Hand Pose and Skeleton Bone-Lengths Estimation from a Single Depth Image

Articulated hand pose estimation is a challenging task for human-computer interaction. The state-of-the-art hand pose estimation algorithms work only with one or a few subjects for which they have been calibrated or trained. Particularly, the hybrid methods based on learning followed by model fitting or model based deep learning do not explicitly consider varying hand shapes and sizes. In this ...

متن کامل

3D Hand Pose Detection in Egocentric RGB-D Images

We focus on the task of everyday hand pose estimation from egocentric viewpoints. For this task, we show that depth sensors are particularly informative for extracting near-field interactions of the camera wearer with his/her environment. Despite the recent advances in full-body pose estimation using Kinect-like sensors, reliable monocular hand pose estimation in RGB-D images is still an unsolv...

متن کامل

Spatial Attention Deep Net with Partial PSO for Hierarchical Hybrid Hand Pose Estimation

Discriminative methods often generate hand poses kinematically implausible, then generative methods are used to correct (or verify) these results in a hybrid method. Estimating 3D hand pose in a hierarchy, where the high-dimensional output space is decomposed into smaller ones, has been shown effective. Existing hierarchical methods mainly focus on the decomposition of the output space while th...

متن کامل

استفاده از برآورد حالت‌های پویای دست مبتنی بر مدل، برای تقلید عملکرد بازوی انسان توسط ربات با داده‌های کینکت

Pose estimation is a process to identify how a human body and/or individual limbs are configured in a given scene. Hand pose estimation is an important research topic which has a variety of applications in human-computer interaction (HCI) scenarios, such as gesture recognition, animation synthesis and robot control. However, capturing the hand motion is quite a challenging task due to its high ...

متن کامل

Articulated Hand Pose Estimation Review

With the increase number of companies focusing on commercializing Augmented Reality (AR), Virtual Reality (VR) and wearable devices, the need for a hand based input mechanism is becoming essential in order to make the experience natural, seamless and immersive. Hand pose estimation has progressed drastically in recent years due to the introduction of commodity depth cameras. Hand pose estimatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015